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Introduction
This is a work analysis session based on simple counting procedures by means of Geiger detectors, organized to better understand the basic elements of statistics concerning particle counting and their properties. A few Geiger counters are used in this session, able to signal the passage of cosmic rays. Measurements carried out with these counters will be analyzed to extract experimental distributions and compare them to the expected Poisson probability distribution.


1. The Geiger counter as a cosmic ray detector 

1.1 Working principle
A Geiger counter is a radiation detector which makes use of the ionization process in a gas, induced by the passage of charged particles. The detection is based on the energy loss of the particle inside the gas volume, which is transferred to atoms and molecules. If the energy transferred to the single atom or molecule is large than its ionization potential, electron-positive ion pair may be created. In a typical gas the average energy required to produce an electron-ion pair is about 30 eV, so that a particle depositing hundreds keV or MeV will create a large number of pairs.
   The basic layout of a Geiger counter is depicted below:
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A metal cylinder, with a diameter of a few cm, is filled with gas. At one end it has a thin mica window, which allows for the passage of particles to be detected, especially those with low energy. Along its axis, a thin metal wire (anode) is put at a positive voltage with respect to the external cylinder (cathode). The voltage difference creates a radial electric field, which reaches high values close to the central wire. The electron-positive ion pairs created by the incoming particles in the gas will drift under the electric field. In particular, electrons will be accelerated towards the anode and will gain an energy high enough to permit secondary ionizations, while a cascade of charged secondary particles is created. This process will produce a voltage pulse, which can be sent to a scaler, in order to collect the number of detected events in a given time interval.

Question: If an electron with energy 0.3 MeV deposits all its energy in the counter, how many electron-ion pairs will be produced?ACTIVITY



1.2 Secondary cosmic radiation and detection with Geiger counters

A Geiger counter is especially sensitive to charged particles, able to ionize the gas inside its volume. Its intrinsic efficiency (probability to detect a particle) is practically 100%. However, a non-negligible fraction of the particles impinging on the detector may be stopped in the counter walls, then they are not detected in the gas. This is especially true for alpha particles (ionized He nuclei) emitted by radioactive sources (a few MeV) or for very low energy electrons. For the secondary cosmic radiation, mainly composed by muons or electrons, their energy is very high (hundreds MeV or GeV), hence they are detected with an efficiency close to 100%. Since the very beginning, Geiger counters have offered a powerful tool to detect the passage of cosmic particles.
   Due to their working principle, such detectors do not provide any information concerning the nature of the detected particle or its energy, but they act as “counters”, providing the information on the number of detected particles in a given time interval. These detectors are “slow” (with respect to other detectors, such as scintillators), producing electrical signals with a time scale of  several µs (1 µs = 10-6 s), where scintillators work on the time scale of ns, i.e. 1000 times faster.


1.3 Geiger counters employed and operating instructions

For this experimental session a set of commercial Geiger counters will be employed. These may be used either in a stand-alone mode, which allows to visualize the passage of a particle by a flashing LED or by a sound, or properly connected to a simple acquisition system, to carry out automatized measurements, such as a data logger or an Arduino-based system, due to a TTL output signal which is produced every time a particle is detected. The following figure shows one of these counters.
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2. Statistics of counting and expected probability distributions


2.1 Particle counting and statistical fluctuations

In many physical phenomena concerning nuclear, particle or cosmic ray physics we are interested in the number of events which occur during a fixed time interval. We can consider for instance the number of telephone calls which we receive every day, or the number of births in a hospital, or the number of red cells in a microscope field of view,… In all these phenomena, repeating the same measurement (for instance along different days or in a different sector of the microscope field of view,..) we may observe variations in the number of events. In other terms, we observe statistical fluctuations around an average value, which is determined by the specific process being considered.  Fluctuations derive from the many factors influencing the result, in such a way that we cannot predict the exact result we will observe in each measurement.
   The number of radioactive nuclei decaying in a given time interval, or the arrival of cosmic rays in the detector exhibit statistical fluctuations. If we measure with a detector the number of particles originating from a radioactive source in equal time intervals we will not obtain the same number of events, but we will be able to make statistical considerations concerning the results. As an example, we could say that on average we count 20 particles per minute, even if sometimes we will get 18 particles or 21 particles… If in a specific one-minute measurement a value much higher than the average number of counts (for instance 75 counts) or much lower (for instance 2 counts) is obtained, this could point out that something different happened during that time interval, something which cannot be interpreted in terms of statistical fluctuations. The analysis of the average properties of a series of measurements, carried out in the same conditions, and of their statistical variations, is an important part of the physics data analysis and requires the basic concepts of statistics. 
   It is very important to understand which values can be obtained in a series of measurements and their probability of occurrence. The set of probability values for each possible result is what we call a distribution probability. In case of events due to the radioactive decay or to the cosmic rays detection,… but even in many everyday phenomena, the probability distribution which describes to a good approximation how the different results are distributed is the Poisson distribution or rare events statistics.
   In this work session we will carry out a set of measurements of cosmic rays with simple Geiger counters and will compare the results with the expected Poisson distribution.   
  
  

2.2 The Poisson distribution for rare events


Without going into the details of the theory of probability, we can just recall here that the Poisson distribution describes the probability to get a given number of counts ν in an experiment where the average number of counts is known and equal to µ. For instance the probability to have 5 births per day when the average number of births is 3. To use the Poisson statistics, the process must obey to the following hypotheses:


a) The number of possible events is very large
b) The probability of the individual event is very small
c) The average number of events of interest is finite, i.e. not very large and not very small, for instance of the order of unity. 
Let us take the example of the radioactive decay. In such a case, the number of nuclei N which can decay is huge (for instance even in a small sample, of the order of the Avogadro number, 1023), but the probability p that a particular nucleus will decay in a given time interval is incredibly small (for instance 10-22) so that the average number of nuclei which will decay in a small time interval ( N x p) will assume values which are of the order of 1-10. Of course the average value depends on how large we choose the time interval. 
   In other phenomena of the everyday life, this hypothesis is only valid to a first approximation, since the involved number N and the elementary probability p are not so large or so small, as in the case of radioactive decay, but still the Poisson distribution is a good approximation for the description of many phenomena.
   Let us recall the mathematical expression of the Poisson distribution. If we denote by µ the mean, the probability to have ν events is given by:
P(ν) = µ ν  e- µ /ν!                                                                          (1)
In this formula, e is the Neper number (2.71828….) and ν! Is the product of the first ν integer numbers. So, for instance, 5! = 1 x 2 x 3 x 4 x 5 = 120, where by definition 0! = 1.
  As an example, fill the table below with the factorials of the following numbers: ACTIVITY

	ν
	0
	1
	2
	3
	4
	5
	6
	7

	ν!
	
	
	
	
	
	
	
	



To calculate the values which the Poisson distribution predicts for each value of ν (the number of events), we need to employ formula (1), once the mean µ is fixed. While µ may assume non-integer values (for instance 1.79), the values of ν are all integers.
As an example, evaluate the Poisson distribution by choosing a value of  µ= ……………… (in the range 1-3, with two decimal digits), filling the table below: ACTIVITYA’

	Value of ν
	Probability P(ν) according to Poisson distribution

	0
	

	1
	

	2
	

	3
	

	4
	

	5
	

	6
	




Make a plot of the values obtained in the previous tableACTIVITY

















What is the detailed shape of the Poisson distribution? Actually, it depends on the value of the mean µ. If the mean is very small (<1), the distribution has a maximum around 0-1, then it decreases. If µ>1 the distribution becomes more symmetric, with a maximum close to the mean and smaller values on both tails. 


3. Masterclass: Experimental session, data analysis and comparison to theory

3.1 Counts from detectors: preliminary considerations

Carry out a few measurements of the counts obtained with a Geiger counter in a short time interval (10-20 seconds) and report the results in the following table, also evaluating the error and the relative error (in %) on the number of counts. Assume  that, according to the Poisson distribution, the error (standard deviation) is given by  σ = √n and the relative error by 100  x  σ/n = 100 x √n/n.ACTIVITY


Time interval =  

	Measure ID
	Counts n
	Error
	Relative Error (%)

	1
	
	
	

	2
	
	
	

	3
	
	
	

	4
	
	
	

	5
	
	
	

	6
	
	
	







Carry out a few measurements in a larger time interval (for instance 1 minute each) and evaluate also in this case their absolute and relative errors, filling the table below:  ACTIVITY


Time interval =  

	Measure ID
	Counts n
	Error
	Relative error (%)

	1
	
	
	

	2
	
	
	

	3
	
	
	

	4
	
	
	



Compare the results and comments them.

3.2 Performing measurements

In the same conditions as before, carry out several measurements in a short time interval (10-20 seconds) with all the Geiger counters available and annotate the results in the table: ACTIVITY


Time interval =  

	Measure ID
	Counts from Geiger1 (C1)
	Counts from Geiger2
(C2)
	Counts from Geiger3
(C3)

	1
	
	
	

	2
	
	
	

	3
	
	
	

	4
	
	
	

	5
	
	
	

	6
	
	
	

	7
	
	
	

	8
	
	
	

	9
	
	
	

	10
	
	
	

	11
	
	
	

	12
	
	
	

	13
	
	
	

	14
	
	
	

	15
	
	
	

	16
	
	
	

	17
	
	
	

	18
	
	
	

	19
	
	
	

	20
	
	
	

	Sum of counts and relative error 
	
	
	

	Mean
	
	
	



For each Geiger counter, evaluate the sum of the counts obtained in all measurements and its relative error. Compare this error with the typical value of the error on the individual measurement. Calculate also the mean, given by: 
                                      Mean = (Sum of values)/(Number of measurements)


3.3 Histograms of collected data

For each set of measurements carried out, evaluate how many times 0, 1, 2, … n counts have been obtained, reporting the results in the following table:ACTIVITY



	Number of counts
	No. of measurements from Geiger 1
	No. of measurements from Geiger 2
	No. of measurements from Geiger 3

	0
	
	
	

	1
	
	
	

	2
	
	
	

	3
	
	
	

	4
	
	
	

	5
	
	
	

	6
	
	
	

	7
	
	
	

	8
	
	
	

	9
	
	
	

	10
	
	
	



Use the above results to build histogram plots, reporting the number of counts on the X-axis and the number of measurements which gave that number of counts on the Y-axis.ACTIVITY
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ACTIVITY

Make your considerations on the results extracted from the experimental distributions. More specifically: 
a) Has each distribution a well defined shape?
b) Are the three distributions equal each other? Are they similar? Are they very different?
c)  Is the most probable value (corresponding to the maximum of the distribution) equal to the average value evaluated in the Table? 
d)  Is the observed shape of the various distributions symmetric with respect to the most probable value? 
e) Did you observe in some case a number of counts much larger than the most probable value? 

If we assume that all measurements have been performed under the same conditions, we can group all the values obtained from different detectors, reporting the results in the following table (column 2). Dividing these results by the overall number of measurements, we obtain the frequency (column 3). Check that the sum of all frequencies gives 1 within the rounding errors. Such property, also called normalization condition, will allow to compare the experimental frequency distribution with the expected theoretical value.ACTIVITY


	Number of counts
	Number of measurements 
from all counters
	Frequency = Number of measurements/Overall number of measurements

	0
	
	

	1
	
	

	2
	
	

	3
	
	

	4
	
	

	5
	
	

	6
	
	

	7
	
	

	8
	
	

	9
	
	

	10
	
	

	
	
	Sum of frequencies = 



Make a plot of these frequencies:ACTIVITY




















3.4 Comparison to the Poisson distribution
To compare the experimental histogram with the predictions of the Poisson distribution, we need to evaluate the mean µ of all measurements. This value is to be used in the Poisson formula (1). To simplify the comparison, we can report the experimental frequency (normalized to 1) in column 2 of the following table and the corresponding value of the Poisson distribution in column 3.ACTIVITY




	Number of counts
	Experimental frequency
	Poisson prediction

	0
	
	

	1
	
	

	2
	
	

	3
	
	

	4
	
	

	5
	
	

	6
	
	

	7
	
	

	8
	
	

	9
	
	

	10
	
	



Finally, to allow for a graphical comparison between the two, make a plot with the two set of values (experimental and predicted from Poisson), using a proper graphical tool (two different symbols or lines to clearly distinguish between the two). ACTIVITY

















ACTIVITY

Make your own considerations concerning the comparison between the experimental distribution and the predicted distribution. More specifically: 

a) Are the two distributions equal? Very similar? Very different?
b) Do you expect a perfect agreement between the two distributions? 
c) How large is the difference between the experimental and theoretical values for each point? 
d) Why the two distributions may be different?
e) Do you expect that a larger number of measurements will produce a better agreement between the two distributions? Why? 
f) If the time interval for each measurement is increased (for instance from 10 seconds to 1000 seconds) how the measurements would be distributed?
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